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LETTER TO THE EDITOR

Classification of invariant solutions of the Boltzmann equation
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‡ Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

Received 5 May 1999

Abstract. An isomorphism of the Lie algebrasL11 admissible by the full Boltzmann kinetic
equation with an arbitrary differential cross section and by the Euler gas dynamics system of
equations with a general state equation is set up. The similarity is also proved between extended
algebrasL12 admissible by the same equations for specified power-like intermolecular potentials
and for polytropic gas. This allows the solution of the problem of classification of the full Boltzmann
equation invariant H-solutions using an optimal system of subalgebras known for the Euler system.
Representations of essentially different H-solutions of the spatially inhomogeneous Boltzmann
equation with one and two independent invariant variables in the explicit form are obtained on this
basis.

Introduction

Earlier symmetries and invariant H-solutions of the full Boltzmann equation (BE) of the kinetic
gas theory were studied by ad hoc methods. In most of these studies a form of admissible
transformation was postulateda priori (see [1,2] for a review). At present, as the result, it was
shown by the authors of [3–5] and others that the full BE admits the 11-parameter Lie group
G11 of point transformations. Some extensions of theG11 group for certain intermolecular
potentials are also known.

By virtue of the heuristic approach the question about the completeness of the found
admissible groups has remained open. In spite of this fact it would be very useful to carry
out a classification of the set of H-solutions for a constructive description of the BE solutions
invariant with respect to these Lie groups.

This classification allows separating the set of H-solutions into non-intersecting essentially
different classes, obtaining the representations of the H-solutions for different classes and
reducing the full BE to corresponding factor equations. The classification demands a
construction of an optimal system of subgroups (subalgebras) of an admissible Lie group
(algebra) [6, 7]. The general algorithms for constructing such systems are known in the
group theory. However, their realization for large dimension groups such asG11 requires
very cumbersome calculations. For example, one can point to the Euler gas dynamics (EGD)
system of equations that admits Lie groups of similar dimensions for different state equations.
Despite the fact that these complete admissible groups were obtained in the 1970s [6] their
optimal systems were only calculated in the last 3–5 years [8–10].

In this letter an isomorphism of Lie groups (algebras) admissible by the full BE and EGD-
system is set up. The proved isomorphism allows using the optimal systems of subalgebras
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obtained for the EGD-system in the papers cited above for the classification of invariant
solutions of the full BE. Representations of the classes of H-solutions of the BE with one
and two independent invariant variables are obtained in explicit forms.

An admissible Lie algebra

The full BE describing the evolution of the distribution functionf (t,x, v) in the product space
R1

+ × R3
x × R3

v is [11]

∂f

∂t
+ v

∂f

∂x
= I (f, f ) (1)

J (f, f ) =
∫

dw dn gσ

(
g,
gn

g

)
[f (v∗)f (w∗)− f (v)f (w)] (2)

v∗ = 1
2(v +w + gn) w∗ = 1

2(v +w − gn) g = v −w
g = |g| |n| = 1.

Heret ∈ R1
+ is time,x = (x, y, z) ∈ R3

x is space variable,v = (u, v,w) ∈ R3
v is molecular

velocity; σ(g, gn/g) is a differential scattering cross section. For power intermolecular
potentialsU(r) ∝ r−(ν−1)(ν > 2) there isσ = gγ σ0(gn/g), γ = (ν − 5)(ν − 1)−1.
A limit ν →∞ corresponds to hard sphere molecules.

In [4] the admissible Lie groupG(Ta) of point transformationsTa of the BE (1) was sought
in the form

f = ϕ(t,x, v; a)f ′ t ′ = τ(t,x; a)
x′ = h(t,x; a) v′ = B(t,x; a)v + b(t,x; a) (3)

wherea is a group parameter,B is some 3× 3 matrix. A feature of the group is that the
nonlinear integral collision operator has the following generalized ‘scaling’ property:

J (f ′, f ′) = ψ(t ′,x′, v′)J (f, f ).
Unknown functions in (3) were found from the main property of an admissible Lie group: the
BE (1) admits a Lie groupG(Ta) if for eacha a transformation (2) converts any solution of
the BE into some solution of the same equation. After substituting (3) into (1) and employing
the splitting-up method [6] we have obtained the admissible Lie groupG(Ta) in the explicit
form. Here we first of all are interested in the Lie algebra corresponding to the found group
G(Ta). For arbitrary cross sectionσ there is a Lie algebraL11(X)with the basis of infinitesimal
generators:

X1 = ∂x X2 = ∂y X3 = ∂z X4 = t∂x + ∂u
X5 = t∂y + ∂v X6 = t∂z + ∂w X7 = y∂z − z∂y + v∂w − w∂v
X8 = z∂x − x∂z +w∂u − u∂w X9 = x∂y − y∂x + u∂v − v∂u
X10 = ∂t X11 = t∂t + x∂x + y∂y + z∂z − f ∂f .

For the power intermolecular potentials there is an extension of Lie algebraL11(X) to
an algebraL12(X) by the generatorX12 = t∂t − u∂u − v∂v − w∂w + (γ + 2)f ∂f . And for
the special caseγ = −1 there is one more generatorX13 = t2∂t + tx∂x + (x− tv)∂v, which
corresponds to a projective transformation [6]. An action of the derivative∂f in the generators
X11 andX12 onto integral operator (2) has to be considered as the Freschet derivative.

Remark 1. In [3] the Lie subalgebra with the generatorsX1, X2, X3, X4, X5, X6, X10 was
originally calculated for the Bhatnagar–Gross–Krook kinetic equation [11]. Then it was
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directly verified that these generators are admissible by the BE (1). Furthermore in [3] the
generatorX12 was presented with reference to Nikol’skii (as a private communication). A
mutual relation betweenX13 and a point transformation of the BE forγ = −1 found by
Nikol’skii [13] was pointed out in [12].

Remark 2. In [5,14] a Lie group with generators as presented here was declared to be a full
(complete) Lie group admissible by the full BE (1). However, calculations were practically
carried out in a similar ad hoc approach as outlined above. We must emphasize that a rigorous
proof of completness of an admissible group can only be given by deriving a general solution
of the determining equations for coefficients of generators [6, 7]. For some kinetic equations
including the BE with higher symmetry such proofs were presented in [15, 16]. The similar
proof for a multi-dimensionalG11 group has yet to be performed.

Classification of subalgebras

Here we present a classification of all H-solutions invariant with respect to the Lie groupG11

of the BE (1). The classification subdivides a set of H-solutions into equivalence (similarity)
classes. Any two H-solutions,f1 andf2, are elements of the same equivalence class if there
exists a transformationTa ∈ G(Ta) such thatf2 = Taf1. Otherwise,f1, f2 belong to different
classes and they are called essentially different H-solutions. A list of all essentially different
H-solutions (one representative from each class) is an optimal system of invariant solutions
that defines the searched classification. To obtain this list anoptimal system2L = {N} of
subalgebras of the admissible Lie algebraL is constructed [6,7]. The2L is a maximal set of
the subalgebrasN ⊂ L, any pair of which is not similar with respect to inner automorphisms
of the algebraL. For low-dimensional algebras the calculations of2L are sufficiently simple.
Optimal systems for kinetic equations with high symmetry were obtained in [3, 15, 16]. But
as the dimension ofL increases computational difficulties grow multifold.

However, for the admissible Lie algebraL11(X) a remarkable circumstance arises that
allows us to avoid tedious calculations.

Theorem 1. The Lie algebraL11(X) admissible by the full BE is isomorphic to the Lie algebra
L11(Y ) admissible by the EGD-system.

Proof. The EGD-system is written as follows [6]:

dρ

dt
+ ρ∇u = 0 ρ

du

dt
+∇p = 0

dp

dt
+A(ρ, p)∇u = 0 (4)

whereρ, p are density and pressure of a gas,∇ is a nabla operator,ddt = ∂
∂t

+∇v. As above,
t ∈ R1

+, x = (x, y, z) ∈ R3
x, v = (u, v,w) ∈ R3

v, but nowv is a vector of gas macroscopic
velocity.

For an arbitrary state functionA(p, ρ) system (4) admits an 11-parameter Lie group of
transformations [6] with the generators:

Y1 = ∂x Y2 = ∂y Y3 = ∂z Y4 = t∂x + ∂u Y5 = t∂y + ∂v
Y6 = t∂z + ∂w Y7 = y∂z − z∂y + v∂w − w∂v
Y8 = z∂x − x∂z +w∂u − u∂w Y9 = x∂y − y∂x + u∂v − v∂u
Y10 = ∂t Y11 = t∂t + x∂x + y∂y + z∂z.



L340 Letter to the Editor

LetQ(X) = Y be a mapping ofL11(X) ontoL11(Y ), defined by one-to-one correspondence
Q(Xk) = Yk, k = 1, . . . ,11. It is directly verified thatQ saves the commutators

Q([Yk, Yj ]) = [Q(Yk),Q(Yj )] j, k = 1, 2, . . . ,11 (5)

where [A,B] = AB−BA. This means thatQ is an isomorphism and the Lie algebrasL11(X)

andL11(Y ) are isomorphic. �

Remark 3. If a state functionA(p, ρ) = κρ (polytropic gas), then there exists an extension
of algebraL11(Y ) by two additional generators:

Y12 = t∂t − u∂u − v∂v − w∂w + 2ρ∂ρ Y13 = ρ∂ρ + p∂p

up to a Lie algebraL13(Y ) = L12(Y ) ⊕ {Y13}. It is analogously proved that the Lie algebra
L12(X) is isomorphic to the subalgebraL12(Y ).

Remark 4. In the case of monoatomic gasκ = (n + 2)/n (n is a flow dimension) the EGD–
system (4) admits one more generator:

Y14 = t2∂t + tx∂x + (x− tv)∂v − ntρ∂ρ − (n + 2)p∂p.

A connection between generatorsX13 andY14 was noted in [12,17].

By virtue of the proven isomorphism of the Lie algebrasL11(X) andL11(Y ) their optimal
system of subalgebras are also isomorphic. Really the more powerful proposition is justified.

Consequence. For classifying and constructing essentially different H-solutions of the BE
(1) one can immediately use the optimal system of subalgebras constucted for the EGD-system
(4) in [8].

Indeed, it is known [6,7] that in practice a construction of an optimal system of subalgebras
of a given Lie algebra is completely defined by a table of commutators of basic generators.
It follows from (5) that the tables of the commutators of both algebrasL11(X) andL11(Y )

coincide up to notations. This proves the consequence.

Remark 5. GeneratorY13 is a centre of the Lie algebraL13(Y ): [Yi, Y13] = 0, i = 1, . . . ,12.
Taking into account remark 3 and relations (5) means that for classification of subalgebras of
L12(X) we can use the optimal system of subalgebraL12(Y ) that was constructed in [9].

Table 1. Representations of H-solutions with one independent invariant variable.

No Representation Index

1 eεθ ϕ(q) (6.3)
2 t−1ϕ(W2 + (V − rt−1)2) (6.4)
3 t−1ϕ(q) (6.5)
4 t−1ϕ(u− xt−1) (6.7)
5 t−1ϕ(u− ε ln t) (6.20)
6 ϕ(t) (6.14)
7 ϕ(u) (6.11)
8 ϕ(u− t) (6.23)
9 eεθ ϕ(w), ε 6= 0 (6.18)

10 t−1ϕ(q/t) (7.2)
11 x−1ϕ(u) (7.3)
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Table 2. Representations of H-solutions with two independent invariant variables.

No Representation Index

1 r−1ϕ(U, q) S (5.1)
2 r−1ϕ(V,W) C (5.2)
3 x−1ϕ(u, q) (5.3)
4 e−αθϕ(u− βθ, q) C (5.4)
5 t−1ϕ(u− x/t, (v − y/t)2 + (w − z/t)2) (5.5)
6 t−1ϕ(u− x/t, q) (5.6)
7 t−1ϕ(u− β ln t + α arcsin((v − y/t)/q), q) (5.7)

q =
√
(v − y/t)2 + (w − z/t)2

8 t−1ϕ(u− β ln t + α arcsin(v/q), q) (5.8)

9 ϕ(t, q), q =
√
(v − y/t)2 + (w − z/t)2, α = 0 (5.9)

10 t−1ϕ(q, arcsin((v − y/t)/q) + α−1 ln t), α 6= 0 (5.9)

q =
√
(v − y/t)2 + (w − z/t)2

11 t−1ϕ(x/t, u− α−1β ln t) (5.10)
12 t−1ϕ(arcsin(v/q)− α−1 ln t, q) (5.11)
13 ϕ(u + α arcsin(v/q)− t, q) (5.12)
14 ϕ(t, u− x/t) (5.13)
15 ϕ(t, q) (5.15)
16 ϕ(t, q), q = (v − (yt + z)/(1 + t2))2 + (w + (y − zt)/(1 + t2))2 (5.16)
17 ϕ(t, u) (5.17)
18 ϕ(x − t2/2, u− t) (5.18)
19 ϕ(x, u) (5.19)
20 ϕ(q, arcsin(v/q) + t) (5.20)
21 x−1ϕ(u,w − β ln x) (5.21)
22 e−βuϕ(v,w) (5.22)
23 t−1ϕ(v − y/t, w − z/t) (5.24)
24 t−1ϕ(u− x/t, v − α−1(x − β ln t)) (5.25)
25 t−1ϕ(x/t − β ln t, u− β ln t) (5.26)
26 t−1ϕ(u− x/t, v − β ln t) (5.27)
27 t−1ϕ(u− β ln t, v) (5.28)
28 t−1ϕ(v,w) (5.29)
29 ϕ(u− t, v − α−1(x − t2/2)) (5.30)
30 ϕ(x − t2/2, u− t) (5.31)
31 ϕ(u, v − x) (5.32)
32 ϕ(x, u) (5.33)
33 ϕ(u− t, v) (5.34)
34 ϕ(t, u− x/t) (5.35)
35 ϕ(t, w + ut − x) (5.36)
36 ϕ(t, u) (5.37)
37 ϕ(t, (v − x/t)2) (6.9)
38 ϕ(t,Q) S (6.10)

Below we restrict our consideration to the Lie algebraL11(X)admissible by the BE (1) with
an arbitrary cross sectionσ . An application of the optimal system of subalgebras ofL11(Y ) [6]
for constructing invariant solutions of the Boltzmann equation and EGD-system is different. It
is connected with different numbers of independent variables and unknown functions. In our
case a study of the optimal system [6] gives 11 different classes of invariant solutions with one
independent variable and 38 with two independent variables. Their functional expressions are
presented in tables 1 and 2.

In the second column of the tables representations of H-solutions are given. In the
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last column pair index(m.i) means a representative of the optimal subalgebras system,m

is a dimension of the corresponding subalgebra andi is its number in table 6 of [8]. In
addition, S means that a given representation should be considered in spherical coordinates
(r, ϕ, θ, U, V,W), whereQ =

√
U2 + V 2 +W 2 and q =

√
V 2 +W 2. C corresponds to

cylindrical coordinates(x, r, θ, u, V,W), where alsoq =
√
V 2 +W 2. Other representations

are considered in Cartesian coordinates withq =
√
v2 +w2 andQ =

√
u2 + v2 +w2. The

α, β, ε are arbitrary constants.
It should be noted that for many representations from tables 1 and 2 some H-solutions

either do not exist or do not have a physical meaning. For some of these it can be immediately
seen. In the general case corresponding factor equations must be obtained from the BE (1)
and studied. However, unlike the EGD-system (4), obtaining factor equations from the BE
with complicated collision integral (2) is rather difficult. As an example of the calculation
difficulties a factor equation for H-solution (38) in table 2 derived in [18] for the BE (1) with
hard sphere molecules (σ0 = const) can be presented:

∂f (t,Q)

∂t
= 16

π2σ0

Q

∫ Q

0

∫ Q

√
Q2−P 2

f (t, P )f (t, R)
√
P 2 +R2 −Q2PR dP dR

+16π2σ0

(∫ ∞
Q

f (t, P )P dP

)2

+32
π2σ0

Q

∫ Q

0
f (t, P )P 2 dP

∫ ∞
Q

f (t, P )P dP

−4

3

π2σ0

Q
f (t,Q)

∫ ∞
0
f (t, P )[(Q + P)3− |Q− P |3]P dP.

Conclusion

Here only one applied consequence of the proved isomorphism was used. Further results on the
invariant solutions of the obtained BE using the optimal subalgebras systems will be published
elsewhere. In the future, investigations of deeper connections between H-solutions of the BE
and of the EGD-system will be conducted.
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